Thermal tolerance of Antarctic notothenioid fishes correlates with level of circulating hemoglobin.

نویسندگان

  • Jody M Beers
  • Bruce D Sidell
چکیده

The West Antarctic Peninsula region is experiencing some of the most rapid elevations in temperature of any marine environment. We assessed thermal tolerance of white- and red-blooded Antarctic notothenioid fishes inhabiting these waters, using a modified critical thermal maximum (CT(max)) design. Temperature was elevated acutely from ambient at a constant rate of 3.6°C h(-1), and CT(max) was defined as the temperature where animals lost righting response. CT(max) temperatures of white-blooded icefishes Chionodraco rastrospinosus (13.3° ± 0.2°C) and Chaenocephalus aceratus (13.9° ± 0.4°C) were significantly lower than those of red-blooded fishes Gobionotothen gibberifrons (15.5° ± 0.2°C) and Notothenia coriiceps (17.1° ± 0.2°C). Lepidonotothen squamifrons, a red-blooded species with low hematocrit, exhibited a CT(max) (14.2° ± 0.4°C) that was significantly lower than that of the other red-blooded animals and similar to that of icefishes. A strong relationship between CT(max) and hematocrit (r(2) = 0.76) suggests that the oxygen-carrying capacity of blood may partially dictate acute lethal temperature. Despite a short treatment duration, we detected a rise in the mRNA level of hypoxia response gene HIF-1α in N. coriiceps heart tissue. One-week exposure to 4°C had no effect on the CT(max) of N. coriiceps, indicating an inability to compensate for rising temperature under these experimental conditions. Our results suggest that icefishes are particularly sensitive to temperature elevation because of a lack of hemoglobin and may be a sentinel taxon for climate change.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphometry of retinal vasculature in Antarctic fishes is dependent upon the level of hemoglobin in circulation.

We quantitatively assessed ocular vascular patterns of six Antarctic notothenioid fishes that vary in their expression of the circulating oxygen-binding protein, hemoglobin (Hb). Digital image analyses revealed marked differences in vessel morphometries among notothenioid species. Hemoglobinless (-Hb) icefishes display mean vessel length densities that are greater (Chaenocephalus aceratus, 5.51...

متن کامل

Constitutive roles for inducible genes: evidence for the alteration in expression of the inducible hsp70 gene in Antarctic notothenioid fishes.

Previous research on the Antarctic notothenioid fish Trematomus bernacchii demonstrated the loss of the heat shock response (HSR), a classical cellular defense mechanism against thermal stress, characterized by the rapid synthesis of heat shock proteins (Hsps). In the current study, we examined potential mechanisms for the apparent loss of the HSR in Antarctic notothenioids and, in addition, co...

متن کامل

Life at Body Temperatures below 0°C: The Physiology and Biochemistry of Antarctic Fishes

Fishes of the Southern Ocean surrounding Antarctica are dominated by species of the suborder Notothenoidei. For ~14MY, these highly successful fishes have evolved under stable thermal conditions that result in a body temperature of ca. 0°C throughout their life histories. Evolution in this chronically cold environment has led to unusual physiological and biochemical characteristics. In some cas...

متن کامل

The effect of temperature adaptation on the ubiquitin-proteasome pathway in notothenioid fishes.

There is an accumulating body of evidence suggesting that the sub-zero Antarctic marine environment places physiological constraints on protein homeostasis. Levels of ubiquitin (Ub)-conjugated proteins, 20S proteasome activity and mRNA expression of many proteins involved in both the Ub tagging of damaged proteins as well as the different complexes of the 26S proteasome were measured to examine...

متن کامل

Temperature differentially affects adenosine triphosphatase activity in Hsc70 orthologs from Antarctic and New Zealand notothenioid fishes.

To test the temperature sensitivity of molecular chaperones in poikilothermic animals, we purified the molecular chaperone Hsc70 from 2 closely related notothenioid fishes--the Antarctic species Trematomus bernacchii and the temperate New Zealand species Notothenia angustata--and characterized the effect of temperature on Hsc70 adenosine triphosphatase (ATPase) activity. Hsc70 ATPase activity w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physiological and biochemical zoology : PBZ

دوره 84 4  شماره 

صفحات  -

تاریخ انتشار 2011